

Н

GENERAL CERTIFICATE OF SECONDARY EDUCATION B651/02

GATEWAY SCIENCE

PHYSICS B

Unit 1 Modules P1 P2 P3 (Higher Tier)

WEDNESDAY 11 JUNE 2008

Afternoon Time: 1 hour

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Candidate Forename					Candidate Surname					
Centre Number							Candidate Number			

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- A list of physics equations is printed on page two.

FOR EXAMINER'S USE					
Section	Max.	Mark			
Α	20				
В	20				
С	20				
TOTAL	60				


This document consists of 19 printed pages and 1 blank pages	This	document	consists	of	19	printed	pages	and	1	blank	pac	ae
--	------	----------	----------	----	----	---------	-------	-----	---	-------	-----	----

SP (NF/SHW) T52632/3

© OCR 2008 [M/103/4266]

OCR is an exempt Charity

[Turn over

EQUATIONS

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

energy = mass x specific heat capacity x temperature change

energy = mass x specific latent heat

fuel energy input = waste energy output + electrical energy output

power = voltage x current

energy supplied = power x time

energy (kilowatt hours) = power (kW) × time (h)

wave speed = frequency x wavelength

$$speed = \frac{distance}{time taken}$$

$$acceleration = \frac{change in speed}{time taken}$$

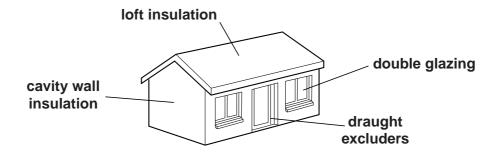
force = mass x acceleration

work done = force \times distance

$$power = \frac{work done}{time}$$

kinetic energy =
$$\frac{1}{2}$$
 mv²

potential energy = mgh


weight = mass x gravitational field strength

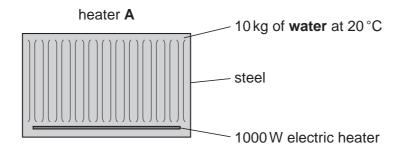
Answer all the questions.

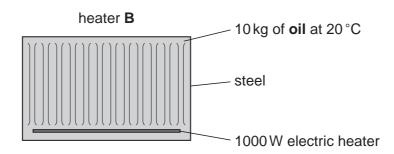
Section A - Module P1

1 Sam wants to reduce her fuel bills.

She needs more insulation in her home.

(a) Look at the information in the table.


insulation method	cost to fit in £	money saved each year in fuel bills in £	payback time in years
cavity wall insulation	1000	250	4
double glazing	3000	200	
draught excluders		100	0.5
loft insulation	200		2


Some information is missing from the table.

(i)	What is the payback time for her double glazing ?	
	answer years	[1]
(ii)	What is the cost to fit draught excluders?	
	answer £	[1]
(iii)	What is the money saved each year by fitting loft insulation?	
	answer £	[1]

(b) Sam has two types of heater. They are filled with different liquids.

Look at the diagrams of Sam's heaters.

Heater **A** is filled with water. Heater **B** is filled with oil.

(i) The water in heater A is at 20 °C.

Sam switches on heater A.

The electric heater heats the water.

The heater supplies 2100000 J of energy to the 10 kg of water.

The specific heat capacity of water is 4200 J/kg °C.

Calculate the maximum temperature of the water.

The equations on page 2 may help you.

[3]

answer°C

	(i	i) The water does not reach this temperature.
		Suggest two reasons why.
		reason 1
		reason 2
		[2]
	(ii	i) Sam switches on heater B .
		The specific heat capacity of oil is 1670 J/kg°C.
		The temperature of the oil heater increases more quickly than the water heater.
		Give one reason why.
		[1]
		[Total: 9]
_		
2	Harry	puts a potato into his microwave oven.
		glass door
	He he	eats the potato for 4 minutes.
	He re	moves the potato. Only the outer layers are cooked.
	(a) \	Vhat material in the potato absorbs microwaves?
		[1]
	(b)	he oven door is made of glass.
	٦	here is a metal coating on the glass.
	(Suggest one reason why.
		[1]

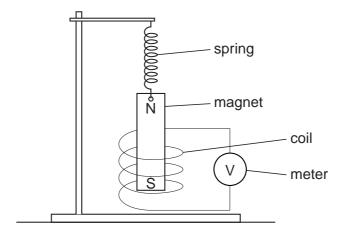
	(c)	Harry wraps the partly cooked potato in shiny foil. This keeps it hot.	
		The energy from the cooked outer layers conducts to the centre.	
		This cooks the potato.	
		Explain how the particles in the potato conduct energy to the centre.	
			[2]
			[Total: 4]
3	Opt	ical fibres are made of glass.	
	The	ey carry infrared waves. These waves carry information.	
	(a)	How does infrared radiation travel along optical fibres?	
			[1]
	(b)	Information can also be carried along copper wires.	
		Using optical fibres can be a better way to carry information.	
		Suggest one reason why.	
			[1]
			[Total: 2]

				7				
Ear	thqu	akes prod	duce shock waves.					
Scie	Scientists measure these shock waves with seismometers.							
(a)	Scie	cientists study two types of shock wave:						
		-	vaves vaves					
	The	p-waves	and s-waves beha	ave differently when they	reach rock.			
	The	ere are tw	o states of rock:					
			id rock uid rock					
	(i) Which state(s) of rock will p-waves go through?							
	Choose from the list.							
		so	olid only	liquid only	solid and liquid			
		answer				[1]		
	(ii)	Which s	state(s) of rock will	s-waves go through?				
		Choose	from the list.					
		so	olid only	liquid only	solid and liquid			
		answer				[1]		
	(iii)	Which o	of these statements	is correct?				
		A p-w	vaves travel faster					
		B p-w	vaves and s-waves	travel at the same speed	d			
		C s-w	aves travel faster					
		Choose	from A , B or C			[1]		
(b)	The	ere are dif	fferent types of wav	/e.				
	(i)	What ty	pe of wave is a p-w	/ave?				
						[1]		

[Total: 5]

(ii) What type of wave is an s-wave?

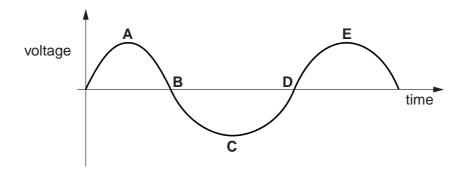
Section B - Module P2


- 5 This question is about the Sun's energy.
 - (a) The Sun's energy can be transferred into electricity using photocells.Look at the picture of a photocell.

© iStockphoto.com / Philip Lange

	(i)	Write down one advantage of using a photocell to provide electricity.	
		advantage[1]
	(ii)	Write down one disadvantage of using a photocell to provide electricity.	
		disadvantage[1]
(b)	Ligh	nt produces electricity in a photocell.	
	Exp	plain how light produces electricity in a photocell.	
	In y	our answer, write about	
	•	energy	
	•	electrons	
	•	light intensity.	
		ro	

6 Wendy sets up the following apparatus.


(a) When the magnet bounces (oscillates) up and down inside the coil, an alternating current (AC) is produced.

Explain why an AC current is produced.

		[0]

(b) Wendy measures the output voltage from the coil.

Look at the voltage-time graph for the output.

Which points represent the magnet being at the top and bottom of its oscillation?

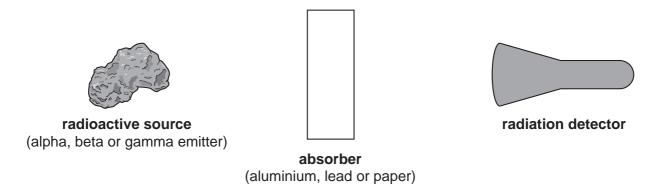
Choose from A, B, C, D or E.

answer and [1]

[Total: 3]

- 7 This question is about paying for electricity.
 - (a) Alan uses an electric iron.

Look at the picture.


© OCR

[Total: 4]

	The iron is connected to the 230V mains.	
	Alan switches the iron on. A current of 3.5 A flows through the circuit.	
	Calculate the power rating of the iron.	
	The equations on page 2 may help you.	
	answerW	[2]
(b)	When he irons his clothes, Alan watches a television.	
	The TV is rated at 200 watts and it is on for 1.5 hours.	
	Electricity costs 12p per unit.	
	Calculate the cost of using the television for 1.5 hours.	
	answerpence	[2]

- **8** This question is about radioactivity.
 - (a) Claire investigates the penetrating power of different radiations.

Look at the diagram of her apparatus.

The boxes show the different radiations and their penetrating power.

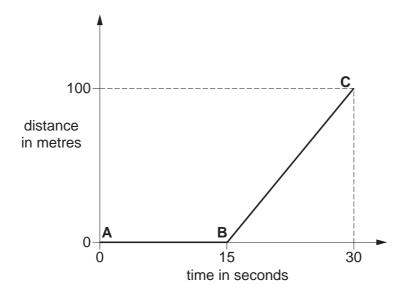
Draw straight lines to show which **penetrating power** relates to which **radiation**.

	radiation	penetrating power	
	alpha	stopped by several centimetres of lead	
	beta	stopped by a few millimetres of aluminium	
	gamma	stopped by one millimetre of paper	
			2]
(b)	Alpha radiation	on causes ionisation.	
	What is an ic	on?	
			•••
	How are ions	s produced?	
			21

[Total: 4]

9	(a)	Scientists have discovered that light from other galaxies is shifted to the red end of the spectrum. This is called red shift.
		How does this discovery give evidence for the Big Bang Theory?
		[1]
	(b)	Black holes have been identified in parts of the Universe.
		Write down two properties of a black hole.
		1
		2 [2]
	(c)	Astronomers use the term 'light year'.
		What is a light year?
		[1]
		[Total: 4]

Section C - Module P3


10 This question is about motion and speed.

Brian runs a hundred metre race.

The distance he travels is measured **before the start** of the race **and** during the first part of the race.

Brian draws a graph of his results. It is a **distance-time** graph.

Look at the graph.

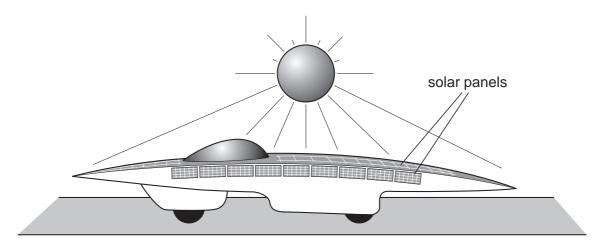
(a)	When does the race start?	
	seconds	[1]
(b)	Brian runs at a steady speed between B and C .	
	Calculate Brian's steady speed between B and C .	
	The equations on page 2 may help you.	
	answerm/s	[2]
(c)	Alice starts the race at the same time as Brian. She runs the race at a faster speed.	

What would the second part of Alice's graph look like?

You may draw your answer on the graph.

_____[

[Total: 4]


[Turn over

This	This question is about cars accelerating .		
(a)	Complete this sentence about acceleration.		
	Acceleration is how much the .	changes each	[1]
(b)	Pat measures the speed of two	o cars. Both cars had started from rest (speed = zero).	
	The speeds were measured at	t the same time.	
	Look at the diagram.		
	car A	car B	
	speed of car A = 10 m/s	speed of car $B = 15 \text{m/s}$	
	Pat measured the speed of bo	oth cars after 3 seconds.	
	Calculate the acceleration of car A.		
	The equations on page 2 may help you.		
(c)	answer Pat thinks that car B has a gree Why?	m/s ² eater acceleration in the 3 seconds.	[2]
			[1]
(d)	The driver of car B presses the	e brakes. The car stops.	
	Look at this information about the car stopping.		
	thinking distance	braking distance	
	10 m	25 m	
	Write down one factor that cou	uld increase	
	thinking distance		[1]
	braking distance		[1]

(e)	The driver of car B loads up the boot of the car with heavy objects.
	He then drives the car at the same speed .
	The driver has to brake to stop the car.
	Suggest how the braking distance changes.
	Explain your answer.
	[2]
	[Total: 8]

12 This question is about energy. Energy can be converted from one form to another.

Look at the diagram. It shows a car powered by energy from the Sun.

(a)	Electrical energy from the solar panels can be used to charge batteries.	
	The energy in the batteries is then used to provide power for the car.	
	Describe an advantage that solar powered cars have over ones that use petrol or o	liesel.
		[1]
		[']
(b)	The solar powered car has a mass of 800 kg and moves at a speed of 8 m/s.	
	Calculate the kinetic energy of the car.	
	The equations on page 2 may help you.	
	answer J	[2]
		[Total: 3]

13 This question is about work done.

Manisha walks up the stairs in her house.

Work is being done.

The work done when Manisha walks up the stairs is 2000 J.

The **power** developed as Manisha walks up the stairs is 500W.

Calculate the time taken to walk up the stairs.

The equations on page 2 may help you.	
answer seconds	[2]
	[Total: 2]

14 Cars have many safety features.

Look at the diagram of a car that has been in a crash.

(a)	Some parts of the car body are designed to change shape in a crash.
	These parts are called crumple zones . They reduce the risk of injury in a crash.
	How do these parts reduce injuries in a crash?
	[1]
(b)	Air bags are another active safety feature in cars.
	Explain how air bags reduce the forces on the driver in a crash.
	In your answer, write about
	stopping distance or time
	acceleration.

END OF QUESTION PAPER

.....[2]

[Total: 3]

19 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Acknowledgements:

Q.5a photo

 $\hbox{@ iStockphoto.com / Philip Lange}\\$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.